Network Layers

The OSI and Internet Models

 Models help us to visualize different aspects of complex abstract systems

Layered Network Models

Used to provide a context for discussion and visualization

Layers represent independent components that can be examined separately or in relation to each other

Almost all communication can be broken down into independent layers that work interdependently.

The 'layers' (and protocols between them) conceptually represent negotiations between aspects of communication: Content, logical (encoding) and physical delivery of messages. Communication theorist Yochai Benkler's layers of communication.

Benkler's Layers of Communication

Example (Benkler's layers in action...)

- My brother in Sweden wants the recipe for my famous 7-layer dip
- What will we need to negotiate to communicate?

What are the ingredients? What is the recipe?

What language will we use? Swedish or English?

How will we communicate? Verbally, writing, pictures?

How will we physically transport the message? E-mail, snail-mail, video, telephone?

Terminology

- Service
 - Performance of a specific communication function
- Layer
 - Self contained set of related services
- Interface
 - Defines which operations and services are offered between layers, from lower to the next layer up
- Protocol
 - An agreement between communicating parties on how the communication is to proceed (i.e., "handshake")
- Stack
 - List of protocols used by a particular system

2 models for network communications

OSI 7-Layer Model

- International Standards Organization's Open Systems Interconnection model
- TCP/IP Model
 - Developed by the Department of Defense

The OSI Layered Model

OSI	– Open	System
Inter	rconnec	tion

- Layered Approach
- Allows better interoperability between software and hardware
- Allows design of elaborate but highly reliable protocol stacks

Application	The Physical Layer
Presentation	Defines all electrical and physical specifications for devices.
	Major Functions
Session	Establishment & Termination of Connections
Transport	Connection Resolution & Flow Control
Network	of Communication Resources Modulation & Conversion between Digital Data
Data Link	Example – radio, SCSI (Small
Physical	Computer System Interface)

Application	The Data Link Layer
Presentation	Controls data transfer between network entities
Session	Performs error detection & correction
Transport	Uses physical/flat Addressing Scheme
Network	Example - Ethernet
Data Link	
Physical	

Application	The Network Layer
Presentation	Performs network routing, flow control, segmentation, and error control functions
Session	 The router operates at this layer
Transport	 Uses local addressing scheme Example – IP, token ring
Network	
Data Link	
Physical	

Application	The Transport Layer
Presentation	Provide transparent transfer of data between end users
Session	 Controls reliability of a given link Some protocols are stateful and
Transport	connection oriented (cookies) Example – TCP / UDP
Network	
Data Link	
Physical	

Application	The Session Layer
Presentation	Provides mechanism for managing the dialogue between end-user application processos
Session	 application processes Provides for either duplex or half- duplex operation Responsible for setting up and tearing down TCP/IP sessions Example – NetBIOS
Transport	
Network	
Data Link	
Physical	

Application	The Presentation Layer
Presentation	 Little to do with PowerPoint Controls syntactical differences in data representation within end- user systems
Session	
Transport	MIME encoding is done at this layer
Network	Example - XML
Data Link	
Physical	

Application	The Application Layer	
Presentation	 Provide semantic conversion between associated application processes Interfaces directly to and performs common application services for the application processes Example – Telnet, Virtual Terminal 	
Session		
Transport		
Network		
Data Link		
Physical		

TCP/IP layered network model

Application	Transmission Control Protocol and Internet Protocol
Transport	TCP/IP is a suite of protocols, also known as the Internet Protocol Suite
Internet	It was originally developed for the US Department of Defense Advanced Research Project Agency
Network access	(DARPA) network, but it is now the basis for the Internet

TCP/IP network model layers

Application	As with the OSI model, the TCP/IP suite uses a layered model.
	TCP/IP model has four or five - depending on who you talk to and which books you
Transport	read! Some people call it a four layer suite -
Internet	Application, Transport, Internet and Network Access, others split the Network Access layer into its Physical and Datalink components.
Network access	

Application	The combination of datalink and physical layers deals with pure hardware (wires, satellite links, network interface cards, etc.)
Transport	 Access methods such as CSMA/CD (carrier sensed multiple access with collision detection) Ethernet exists at the network access layer
Internet	- its hardware operates at the physical layer and its medium access control method (CSMA/CD) operates at the datalink layer.
Network access	

Transport

Internet

Network

access

This layer is responsible for the routing and delivery of data across networks.

 It allows communication across networks of the same and different types and carries out translations to deal with dissimilar data addressing schemes. IP (Internet Protocol) and ARP (Address Resolution Protocol) are both to be found at the Internet layer.

Application	 The transport layer is similar to the OSI transport model, but with elements of the OSI session layer functionality. The two protocols found at the transport
Transport	 The two protocols found at the transport layer are: TCP (Transmission Control Protocol): reliable, connection-oriented protocol that provides error checking and flow control through a virtual link that it establishes and finally
Internet	 terminates. Examples include FTP and Email UDP (User Datagram Protocol): unreliable, connectionless protocol that not error check or offer any flow control. Examples include SNMP
Network access	

Application	This layer is broadly equivalent to the application, presentation and session layers of the OSI model.
Transport	 It gives an application access to the communication environment. Examples: Telnet
Internet	 HTTP (Hyper Text Transfer Protocol) SMTP (Simple Mail Transfer Protocol)
Network access	

Similarities

- Based on a stack of independent protocols
- Layers have roughly same functionality
 - Transport layer and below provide networkindependent transport services
 - Layers above transport are application-oriented
- Why is this important?
 - Easier to blend, use what works best

OSI: General model before protocols

- Model was conceptual, designers didn't know what functionality to put in the layers
- Model is general, easier to replace protocols
- Model had to adjust when networks didn't match the service specifications (wireless networks, internetworking)
- TCP/IP: model describes existing protocols
 - Model only describes TCP/IP not useful for describing any other networks (such as telephone networks)
- Why does this matter?
 - Knowing which model to use for your context

- Number of layers
 - OSI has 7, TCP/IP has 4
- Why does this matter?
 - Real world vs. conceptual

Connectionless vs. connection-oriented

- OSI
 - Network layer supports both
 - Transport layers supports only connection-oriented
- TCP/IP
 - Network layer supports only connectionless
 - Transport layers supports both
- Why does this matter?
 - What do you need for your situation?

OSI Flaws

- Bad Timing
 - TCP/IP already well-established in academia
- Bad Technology
 - Complicated, controversial model
 - Unbalanced layers
 - Repeating functions
 - Designed for communications, not computing

OSI Flaws (cont'd)

- Bad Implementations
 - Complicated to understand and implement
- Bad Politics
 - Seen as biased toward European telecom, European Community and U.S. government
- Why does this matter?
 - Knowing which model to use for your context

TCP/IP Flaws

- Blurred lines
 - Doesn't clearly distinguish between
 - services (what a layer does),
 - interfaces (how the layer communicates) and
 - protocols (how the layer does what it does).
- Too specific
 - Model is only suited to describing TCP/IP, not other networks
 - Protocols can be very specific, inflexible

TCP/IP Flaws (cont'd)

- No distinction between physical and data link layers
 - No description of transmission media, nor frame delimiters
- Why does this matter?
 - Model is too specific, not specific enough

Conclusion

- Layered models are useful in describing complex communication systems
 - Allows developers to focus on layers independently
 - Applies to conceptualization as well as implementation

Models vs. protocols

- OSI model is useful in describing networks, but protocols are too general
- TCP/IP model is weak, but protocols are specific and widely used